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Abstract 

During the last few decades, algebraic geometry has become a tool for solving differential equa- 
tions and spectral questions of mechanics and mathematical physics. This paper deals with the study 
of the integrable systems from the point of view of algebraic geometry, inverse spectral problems and 
mechanics from the point of view of Lie groups. Section 1 is preliminary giving a little background. 
In Section 2, we study a Lie algebra theoretical method leading to completely integrable systems, 
based on the Kostant-Kirillov coadjoint action. Section 3 is devoted to illustrate how to decide 
about the algebraic complete integrability (a.c.i.) of Hamiltonian systems. Algebraic integrability 
means that the system is completely integrable in the sense of the phase space being Collated by 
toil, which in addition are real parts of a complex algebraic tori (abelian varieties). Adler-van Mo- 
erbeke's method is a very useful tool not only to discover among families of Hamiltonian systems 
those which are a.c.i., but also to characterize and describe the algebraic nature of the invariant 
toil (periods, etc.) for the a.c.i, systems. Some integrable systems, such as Kortewege-de Vries 
equation, Toda lattice, Euler rigid body motion, Kowalewski's top, Manakov's geodesic flow on 
SO(4), etc. are treated. © 1999 Elsevier Science B.V. All rights reserved. 
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1. B a c k g r o u n d  

A Hamiltonian system XH : ~ = OH/Oz, J =-- J ( z )  anti-symmetric,  possibly depending 

on z E ~2n,. = d / d t  is called completely integrable if there exist n integrals (or conserved 

quantities) H1 = H, H2 . . . . .  Hn in involution (i.e. such that the Poisson brackets { Hi, H l } 

all vanish) with linearly independent gradients (i.e. dHj  . . . . .  dHn l inearly independent). 

For most values of  ci ~ ~, the invariant manifolds 
/ /  

( ~ { H i  = ci, Z E ~2n} 

i=1 
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are compact, connected and therefore diffeomorphic to real tori A n/lattice by the Amold- 
Liouville theorem [7]. Also, there is a transformation to so-called action-angle variables, 
mapping the flow into a straight line motion on that torus. 

Last century, mechanics was dominated by the question whether a dynamical system 
can be solved by quadratures, i.e. by a finite number of algebraic operations including 
the inverting of functions. This was done, if at all possible, by finding appropriate vari- 
ables (~1 . . . . .  ~2) such that (Ctl . . . . .  otn, HI . . . . .  Hn) form a local system of canonical 
coordinates in which the Hamiltonian vector fields XHi take the simple form 

x H j :  /:/i = 0 

Historically, the developments of mechanics and algebraic geometry (in particular the 
theory of Riemann surfaces) were closely intertwined. This comes from the fact that, 
in most examples, the quadratures o/i were obtained in terms of elliptic or hyperelliptic 

integrals 

sk(t) 
g f Z n-t dz 

= Z - j (1.1) 
k = l  

with P(z, c~) a polynomial of degree 2g + 1 or 2g + 2 in z and the Sk(t) some appropri- 
ate variables, algebraically related to the originally given ones, for which the Hamilton- 
Jacobi equation could be solved by separation of variables. The solutions of these problems 
can be expressed in terms of 0-functions related to Riemann surfaces. Some examples of 
this are: 

(a) Jacobi's integration [16] of the geodesics on ellipsoid by using elliptic coordinates 
and various tricks. (b) Neumann's study [45] of a mass point moving on the sphere under 
the influence of a linear force, using the spherical elliptic coordinates. (c) Euler, Lagrange 
and Kowalewski [21 ] consider the problem of some three-dimensional rigid body motions 
and they express their solutions in terms of elliptic and hyperelliptic integrals. (d) We men- 
tion also Ktitter's solution [ 19,20] by quadratures in terms of hyperelliptic integrals of the 
integrable Clebsch's [8] and Lyapunov-Steklov's cases [35,46] of Kirchhoff's equations de- 
scribing the motion of a solid body in an ideal fluid, etc. The classical approach to proving 
that a system is integrable by quadratures (in terms of hyperelliptic integrals) was some- 
thing very unsystematic and required a great deal of luck and ingenuity. Jacobi [ 16] himself 
was very much aware of this difficulty and in his famous "Vorlesungen iiber Dynamik", in 
the contex of geodesic flow on the ellipsoid (before introducing the elliptic coordinates), 
he wrote: "Die Hauptschwierigkeit bei der Integration gegebener Differentialgleichungen 
scheint in der Einfiihrung des richtigen Variablen zu bestehen, zu deren Auffindung es kein 
allgemeine Regel giebt. Man daher das ungekehrte Verfahren einschlagen und nach er- 
langter Kenntniss einer merkwiirdigen Substitution due Probleme aufsuchen, bei welchen 
dieselbe mit Gliick zu brauchen ist" Finally, after Poincar6 had recognized that most Hamil- 
tonian systems are not completely integrable, the interest in this subject descreased for more 
than half a century. 
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2. Completely integrable systems and Kac-Moody Lie algebras 

267 

The discovery some 30 years ago (by Gardner et al. [12]) that the Korteweg-de Vries 
(KdV) equation [26] 

Ou 1 (6u Ou O3u 
at - 4 7x  + ~ x 3 ]  ' u(x ,  O) = u(x) ,  x e ~ (2.1) 

could be integrated via inverse spectral methods has generated as enormous number of new 

ideas in the area of Hamiltonian completely integrable systems. Lax [24] showed that (2.1) 
is equivalent to the equation (called "Lax equation"): 

A = [ B , A ] = - - B A - A B ,  (2.2) 

where A and B are the differential operators in x: 

A = 
02 03 3 0 

Ox 2 + u (Sturm-Liouville, Hill operator), B = ~ + ~U~x x + u. 

Eq. (2.2) means that, under the time evolution of the system, the linear operator A ( t )  re- 

mains similar to A(0). So the spectrum of A is conserved, i.e. it undergoes an isospectral 

deformation. The eigenvalues of A, viewed as functionals, represent the integrals (constants 
of the motion) of the KdV equation. Around 1974, Mc Kean, van Moerbeke, Dubrovin and 

Novikov [9,36] solved the periodic problem for the KdV equation (for x e S I ) in terms 

of a linear motion on a real torus. This torus is the real part of the Jacobi variety of a 
hyperelliptic curve with branch points defined by the simple periodic and anti-periodic 

spectrum of A. Also the motion is a straight line in the variables of the Abel-Jacobi 
map (1.1). 

A parallel theory related to Jacobi matrices had its origin in the periodic Toda problem 

which I shall now explain. The Toda lattice equations (discretized version of the KdV equa- 
tion) motion of n particles with exponential restoring forces are governed by the following 

Hamiltonian: 

1 II ;'1 

S ,  • H = 2 p -F e qk-qk+j 
k=l k=l 

The masses can be displayed on the line (q,+l = o~, non-periodic Toda system) or on the 
circle (q,,+l = ql, periodic Toda system). The Hamiltonian equations can be written as 

follows: 

O H  O H  
Ok - -  - -  - -  Pk ,  Pk - -  _ _  _ eqk--qk+l + eqk-t--qk. (2.3) 

Opk Oqk 

Consider the infinite Jacobi matrix (symmetric and tridiagonal) 
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' • •  ' • •  

bn an 

an bl  a l  

a l  ". ". 

". ". a n - I  

A =  a n - I  bn an 

an bl  a l  

a l  ". ". 

". ". a n - I  

a n - I  bn an 

an bl  ". 

with an = 0 for the non-periodic system• Flaschka [10,11] showed that the equations (2.3) 
are equivalent to Lax equation if we set 

ak = ½e (qk-qk+l)/2, bk = --½ Pk (Flaschka's transformation). (2.4) 

From this one deduces that the spectrum of the Jacobi matrix 

t bl al  0 . • .  0 

/ 

al ". "- 
0 ' .  ' .  ". 0 

". ". a n - I  

0 . . .  0 a n - I  bn 

provides integrals (constants of  motion) for the Toda system on the line. For the periodic 
system, the spectrum of A is conserved. It is equivalent to say that the spectrum of the 
matrix 

A ( h ) =  

bl  a l  . . . . . .  an h - I  

I 
al  b2 a2 

a2 ". ". 

". ". a n - 1  

a n h  . . . . . .  a n - I  an 

is preserved. To be precise, by Flaschka transformation (2.4), the equations (2.3) are trans- 
formed into 

2 
b k = 2 ( a ~  -- ak+l), an+l  =al, a k = a k ( b k + l  -- bk ) ,  bn+l  ----bl. (2.5) 
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From the first equation in (2.5) we have I]bk = constant ,  and we normalize by requiring 

that Ebk = 0. Then Eqs. (2.5) are equivalent to the Lax equation 

,4(h) = [B(h), A(h)], 

where A (h) is given above and 

0 al . . . . . . .  an h - I  

- a l  0 ". 

B (h )  = " ".. . .  ".. • 

a n -  I 

an h . . . . . . .  an -  1 0 

We note that 

Ak(h )  = [B(h), Ak(h)], k ~ 

and tr A k = constant ,  1 < k < n, i.e. tr  A k are n integrals for (2.5). These integrals 

are independent, in involution and the Toda lattice is a completely integrable Hamiltonian 
system. 

Krichever [23] generalized these ideas to differential operators of any order, inspired 

by special examples of Zaharov-Shabat [49]. Among which is the important Kadomtsev- 
Petviashvili (KP) equation 

4 0y 2 --  Ox f i t - - 4  6U~x  + Ox3 ] J ' 

KdV equation (2.1) and the equation of a non-linear string (Boussinesq equation): 

02u 0 (6uOU 0 3 u ~  
3Ty2 \ 0x + 0x3) = °  

Also this theory was generalized to difference operators of any order by van Moerbeke and 
Mumford [41]. They worked out a systematic method which provides an algebraic map 

from the invariant manifolds defined by the intersection of the constants of the motion to 
the Jacobi variety 

Jac(C) = H l ( ( O c ) / H  j (C, 2 e) 

of an algebraic curve C associated to Lax equation. More precisely, we define the spec- 
tral curve C associated to Lax equation to be the normalization of the complete algebraic 
(hyperelliptic) curve whose affine equation is 

C " d e t ( A ( h )  - z I )  = ( h  + h ) - P ( z )  = O, 

where P ( z )  is a polynomial of degree n in z. The motion of the system is linear in the 

variables of the Abel-Jacobi map (1.1). 
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The symplectic structure E dpi /x dqi of the non-periodic Toda lattice in Flaschka's 

variables (2.4) is given by [39] 

dbj A ~ dai 
ai j=2 i=j 

and is the symplectic structure of  a Kostant-Kiri l lov-Souriau orbit formed by the coadjoint 
action of the subgroup GN C SL(n) of lower triangular matrices on the dual N* of its 

Lie algebra N. Also, Adler [1] and Lebedev-Manin [25] developed a similar theory in the 
context of  the symplectic structure of the Korteweg-de Vries equation. These investigations 

gave rise to the Adler-Kostant-Symes theorem [ 1,18,47]: 

T h e o r e m  1. Let £ be a Lie algebra paired with itself via a non-degenerate, ad-invariant bi- 
linear form ( , ), ~ having a vector space decomposition £ = IC + A/'with 1C and JV'Lie sub- 
algebras. Then, with respect to ( , ), we have the splitting £ = £* = / C  -l- +A/"± and.N'* = 
1C ± paired with ./kf via an induced form (( , )) inherits the coadjoint symplectic structure 
of Kostant and Kirillov; its Poisson bracket between functions HI and 1-12 on iV'* reads 

{HI, H2}(a) = ((a, [VA/*H1, VAf*H2])), a E ./V'*. 

Let V CAf*  be an invariant manifold under the above co-adjoint action of Af on Af * 
and let A(V) be the algebra offunctions defined on a neighborhood of V, invariant under 
the coadjoint action of £. (which is distinct from the Af - Af* action). Then the functions 
H in .A(V) lead to commuting Hamiltonian vector fields of the Lax isospectralform 

gt = [a, pr~(V H)], pr~ projection onto 1C 

This theorem produces Hamiltonian systems having many commuting integrals; some 
precise results are known for interesting classes of orbits in both the case of  finite and 

infinite dimensional Lie algebras usually lead to non-compact ones. Any finite dimensional 
Lie algebra £ with bracket [ , ] and killing form ( , ) leads to an infinite dimensional 

formal Laurent series extension 

N 
~" = Z Aihi : Ai E ~, N E 7/free 

with bracket 

[ ~  Ai hi , ~ BJ hj ] ~- Z [ A i ,  Bj]h i+j 
i,j 

and ad-invariant, symmetric forms 

( Z  aihi' E BjhJ)k = ~ (Ai, Bj) 
i+j=-k 

depending on k 6 2v. The forms ( , )k are non-degenerate if ( , ) is so. Let ~.p.q (p < q) 
be the vector space of powers of  h between p and q. A first interesting class of  problems 
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is obtained by taking £ = ~l(n,  ~)  and by putting the form < , )l on the K a c - M o o d y  

extension. Then we have the decomposit ion into Lie subalgebras 

£ = £o .~  + £ - ~ , - 1  = K + A f  

with/C = /C ±, .Af = Af ± and/C = iV'*. Consider the invariant manifold Vm, m _> 1 in 

]C = .iV'*, defined as 

Vm = A ---- Aih  i + oth In, ot = diag(otl . . . . .  otn) fixed 

i=1 

with diag(A,,,_ 1 ) ---- O. 

T h e o r e m  2. The manifold Vm has a natural symplectic structure, the functions H = 

< f ( A h -  / ), h k > I on Vm for  good functions f lead to complete integrable commuting Hamil- 

tonian systems o f  the form 

m -  1 

A = [A, p r l c ( f ' ( A h - J ) h k - J ) ] ,  A = Z Aihi + oth 
i=0 

and their trajectories are straight line motions on the Jacobian of  the curve C of  genus 

(n - 1)(nm - 2 ) / 2  defined by P ( z, h) = det(A - z l ) = O. The coefficients o f  this polynomial 

provide the orbit invariants o f  Vm and an independent set o f  integrals o f  the motion. (Of  

particular interest are the f lows where j = m, k = m + l which have the following form: 

= [ A , a d f a d ~ l A m _ !  + ~ h ] ,  fli = f ' ( a i )  

the f low depends on f through the relation ~i : f '  (~i) only.) 

Another class is obtained by choosing any semi-simple Lie algebra L. Then the K a c -  

Moody extension C equipped with the form < , ) = < , )0 has the natural level decom- 

position 

E = Z Li, [Li, Lj] C Li+j ,  [L0, L0] = 0, L* ----- L_  i. 
icy 

Let B + = Y:~i>_o Li and B -  = )-~i<0 Li. Then the product Lie algebra E × E has the 

following bracket and pairing: 

[(z,, 12), (r,, @} = ([l,, r!], -[12,1;]), <(i,, 12), (1',, @> = <i,, r,> - <12, @. 

It admits the decomposition into K~ + iV', with 

/C = {(l, - l )  : l e E}, /C ± = {(1, 1) " 1 ¢ £}, 

.Af = {(1_, 1+) : l_ E B - ,  l+ • B +, pro( l - )  = pro(l+)}, 

Af ± = {(1_, l+) : l_ • B - ,  I+ E B +, pro(l+ + 1_) = 0}, 

where pro denotes projection onto L0. Then from Theorem 1, the orbits in A/'* = /@- 

possess a lot of  commuting Hamiltonian vector fields of  Lax form: 
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Theorem 3. The N-invariant manifold 

- j < i < k  

has a natural symplectic structure and the functions H(ll ,  12) -- f ( l l )  on V-j,k lead to 

commuting vector fields of the Lax form 

[ = [/, (pr + - ½Pro)VH], pr + projection onto B + 

their trajectories are straight line motions on the Jacobian of a curve defined by the char- 

acteristic polynomial of elements in V-j,k. 

To summarize the methods explained above, let us assume a Hamiltonian system having 

an associated Lax equation 

A = [B(h), a(h)] ,  (2.6) 

where 
q 

A = ~ A k ( t ) h  k, 
q 

B = E Bk(t)hk 
- p  - p  

are finite Laurent series in a variable h whose coefficients are matrices depending on a 
parameter. Some Hamiltonian flows on Kostant-Kirillov coadjoint orbits in subalgebras of 

infinite dimensional Lie algebras (Kac-Moody Lie algebras) yield large classes of extended 

Lax pairs (2.6). A general statement leading to such situations is given by the Adler-Kostant- 
Symes theorem. Using the van Moerbeke-Mumford linearization method, Adler and van 

Moerbeke [2,3] showed that the linearized flow could be realized on the Jacobian variety 
Jac(C) (or some subabelian variety of it) of an algebraic curve (spectral curve) associated 

to (2.6). To be precise, a Hamiltonian flow of the type (2.6) preserves the spectrum of A and 
therefore its charcteristic polynomial P(z, h) = det(A(h) - z l ) .  The curve C : P(z, h) = O, 
of genus g, is time independent, i.e., its coefficients are integrals of the motion (2.6). We 
then construct an algebraic map from the complex invariant manifolds of these Hamiltonian 

systems to the Jacobi variety Jac (C) oft  he curve C. Therefore all the complex flows generated 
by the constants of the motion are straight line motions on these Jacobi varieties, i.e. the 
linearizing equations are given by 

g si(t) 

t 1 ~. (0) 

where ~ol . . . . .  ~Og span the g-dimensional space of holomorphic differentials on the curve 
C of genus g. In a unifying approach, Griffiths [13] has found necessary and sufficient 
conditions on B(h) for the Lax flow (2.6) to be linearizable on the Jacobi variety of its 
spectral curve, without reference to Kac-Moody Lie algebras. 

Among the systems which fit into this scheme are the Euler's, Lagrange's and Kowalewski's 
rigid body motion, Jacobi's geodesic flow on ellipsoids, Neumann's problem, Clebsch's 
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case of  Kirchoff 's equation, the Toda systems as explained above, the isospectral flows 

for period band matrices, Nahm's  equations which arise in the study of  monopoles, etc. 

[3,6,15,17,42,43 ]. 

Next I shall explain how these methods can be used on some examples. 

2.1. The Euler rigid body motion 

It expresses the free motion of  a rigid body around a fixed point and is governed by the 

equations 

#t = m A )~m, m E ~3, )~m = ( k l m l ,  k2m2,  ,k3m3) E [~3 (2.7) 

with (ml, m2, m3) the angular momentum in body coordinates and (X~ -1 , )~,]l, )~-I) the 

principal moments of inertia 0~1 < )~2 < k3). The system has two invariants 

H1 = m~ + m22 + m 2 = Cl, H2 = ~.lm~ + k2m 2 + ~.3m 3 = c2. (2 .8 )  

Observe that (2.7) can be written as a Hamiltonian system (m) (Om3m2) 
"f -~ J-S'~.. ' x = m2  J = m3  0 - m l  e so(3) 

m3 - - m 2  m l  0 

with Hamiltonian H = ½1-12. The system evolves on the intersection of  the sphere H1 = c'1 

and the ellipsoid He = c2. In ~3, this intersection will be isomorphic to two circles (with 

c2/)~3 < cl < c 2 / k l ) .  The system (2.7) has the following explicit form: 

n~/l = (~-3 --,k2)m2m3, rh2 = ()~1 --)~3)mlm3, rh3 = ()v2 -- ,kl)mlm3. (2.9) 

We have that 

dm I 
- -  ( ) ~ 3  - -  ~ - 2 )  dt, 

m2m3 

Solving (2.8) for m2 and m3, one finds 

. /Cl)~3 + 0~1 k3)m~ m~ = ± , /  . --  C2 

- V x 3  - ~.2 

, m3 = 4 - ~  c2 --  clk2 + (Z2 - )~l )m~ 

k3 - he 

(2.10) 

and substituting these expressions into (2.10) leads to an elliptic integral 

ml(l} 

f V/(X 2 -~ a) (x  2 + b) = ct, 
m I (0) 

where a = (cl)~3 - c2)/(kl  - )~3), b = (c2 - cl)~2)/(~.2 - )~J), c = x/(~.j - )~3)0~2 - )~l) 
and with respect to the elliptic curve 

w 2 = (z 2 + a ) ( z  2 + b ) .  (2.11) 
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Therefore, the system (2.7) can be integrated by quadratures and their solutions can be 
expressed in terms of theta-functions, according to the classical Jacobi inversion problem. 
As is well known, if one identifies vectors in R3 with skew-symmetric matrices by the rule 

( 0  --m3 m 2 )  
x = (ml, m2, m3), X = m3 0 --ml 

--m2 ml 0 

then x/x y ~+ [X, Y] = X Y  - YX .  Using this isomorphism, we write (2.7) as 

= [X,)vX], X e so(3), )~X e so(3), (2.12) 

which may be regarded as the Lie algebra version of (2.7). The solution to (2.12) has the 
form X ( t )  = O ( t ) L ( t ) O T ( t ) ,  where O(t)  is a one parameter sub-group of SO(3). So 
the Hamiltonian flow (2.12) preserves the spectrum of X and therefore its characteristic 
polynomial 

det(X - z I )  = - z ( z  2 + m 2 + m 2 + m~). 

Unfortunately, the spectrum of a 3 x 3 skew- symmetric matrix provides only one piece of 
information; the conservation of energy does not appear as part of the spectral information. 
Therefore one is let to considering another formulation. The basic observation, due to 
Manakov [37], is that if 

) ~ l - - - -  
Ot 3 - -  0/2 ' 

vx [x,/~]+[a, zx]=o¢> z , - - -  
0/1 - -0 /3  ' 

~ 2  - -  El 
0 / 2 - - 0 / I  ' 

0/= diag(0/l, 0/2, 0/3), fl = diag(fll, f12, f13), 

Eq. (2.12) is equivalent to 

(X-4-0/h) = [X -t- oth, ~.X + ~h] 

with a formal indeterminate h. The characteristic polynomial of the matrix X + 0/h is given 
by 

2/ (3) 
d e t ( X + 0 / h - z I ) = H ( 0 / i h - z ) +  0~ira h -  Z m 2  z 

i = |  \ i = 1  ! i=1 

and except for some constants, its coefficients are generated by ~ m 2 and Y~ 0~ira 2, which 
yield the energy. The spectrum of the matrix X + 0/h as a function of h e C is time 
independent and is given by the zeroes of the characteristic polynomial det(X + 0/h - z I) = 
O, which defines an elliptic curve 

3 ( k  2) k m2 h H --  -~ O, W ---- -- z 2 (0/iw 1) -+- 0/im to - i 

i=1 \ i=l  / i=l z 
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isomorphic to the original elliptic curve (2.11). The linearized Euler flow can be realized 

on the Jacobian of this elliptic curve, i.e. the curve itself. 

2.2. Manakov's geodesic f low on S0(4)  

Consider the group SO(4)  and its Lie algebra so(4) to itself, via the customary inner 
product 

(X, Y) -- - ½ t r ( X  . Y), 

where 

X -= (Xij)l<_i.j<_4 = E x i e i  = 
i=1 

0 - - x  3 x2 - - x4  

x3 0 - x l  - x 5  J ~ so(4). 
--x2 xl  0 --x6 

x4 x5 x6 0 

A left invariant metric on SO(4)  is defined by a non-singular symmetric linear map )~: 
so(4) ~ so(4), X ~ )~ • X and by the following inner product: given two vectors gX  and 

gY  in the tangent space SO(4)  at the point g e SO(4)  

(gX, gY)  = ( x , ) - I  . y)  

regardless of  g. Then geodesic motion with regard to this metric takes the form (Euler-- 

Arnold equations): 

)( = [X, )~. X] (2.13) 

with k • X = ( ) u j X i j ) l < i , j < 4  = Y~6i= 1 )~ixiei  • This flow is Hamiltonian with regard to the 
usual Kostant-Kiril lov symplectic structure induced on the orbit 

0 = {Ad~,(X) = g - I X g  : g ~ SO(4)}, 

formed by the coadjoint action Adg (X)  of the group S O (4) on the dual Lie algebra so(4)* ~ 

so(4). Let z j, z2 c so(4) and consider $1 = [X, zl ], $2 = IX, z2] as two tangent vectors to 
the orbit at the point X e so(4). Then the symplectic structure is defined by 

~o(x) (~ ,  $2) = (x ,  [z~, z2]). 

This orbit is four-dimensional and is defined by setting two trivial invariants HI and H:, 

equal to generic constants cl and c2: 

Hj = , /det  X = xlx4 + x2x5 + x3x6 = el, 
6 

2 H 2 = -  t r ( X  2 ) =  i = c - "  (2.14) 
i=1 

Functions H defined on the orbit lead to Hamiltonian vector fields 

k = [X, VH] .  
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In particular, 

6 
1 1 

H = z.~(S' )." X )  • "~ Z~.iX2 (2.15) 
i=1 

induces geodesic motion (2.13). The constants of the motion are given by the two quadratic 
invariants H1, H2 (2.14) and the Hamiltonian H (2.15). Since the system is Hamiltonian 
on a four-dimensional symplectic manifold 

{Ht = Cl} n {H2 = c2}, 

to make it completely integrable, one needs one extra independent invariant. The first step 
towards the complete integrability of (2.13) was done by Manakov [37] who observed that 

under conditions 

/32 --  /33 /31 --  /34 
L1 = , ~ 4 - -  

~ 2 - - ~ 3  ~1 - - ~ 4 '  
/31 -- /33 /32 - - /34 

~ 2 - -  - - ,  ~5 = 
ffl --~3 ~2- -~4 '  
/31 - - /32 /33 - - /34 

~i,  fli arbi~aryand I-I(ffi --/3j) ~ 0 ,  
i<j  

(2.16) 

the Lax flow (2.13) 
indeterminate h): 

can be transformed into the following Lax-type equation (with an 

Consider the Kac-Moody extension (n = 4) 

[ Jf = [X, ~.. X] ¢~ (2.13) 

, J [X,/3]+[u, ),. X]=0¢~(2.16)  
" | [~, 13] = 0 trivially satisfied (2.17) 

[ for diagonal matrices 

£. = gl(n) = Ai hi : Ai E gl(n), N E Y_free 
--00 

of gl(n) with the bracket 

and the Killing form (ad-invariant form) 

(A(h)'B(h)) =(~"~Aihi' Z BjhJ)= Z tr(AiBj). 
i + j = - I  

This Lie algebra has a natural decomposition 

£ = / C + N ' ,   :l aihi/'go 

(X-I-uh)=[X+~h,XX+/3h] } 
= diag(ul . . . . .  ~4) ,( 

/3=diag(/31 . . . . .  /34) 
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According to the Adler-Kostant-Symes theorem, the flow (2.17) is Hamiltonian on an orbit 

through the point X + ah, X ~ so(4), formed by the coadjoint action of G H  on the dual 

Kac-Moody algebra N'* = / C  ± =/C,  where _L is taken with respect the Killing form above. 
As a consequence, the coefficients of zih i appearing in the spectral curve 

C : det(X + ah - z l )  = 0 

are invariant of the system in involution for the symplectic structure of this orbit. Also 
the flows generated by these invariants can be realized as straight lines on Jac(C). More 

precisely, the spectral curve C is given by 

4 

C : I--I(otih - z) + H2(X)z  2 - H3(X)zh  + n 4 ( X ) h  2 + H2(X)  = 0 (2.181 
i = 1  

with H i ( X )  = cl, H2(X) = c2 defined by (2.14),/-/3 (X) = 2H = c3 by (2.15) and a 4th 
quadratic invariant of the form 

6 

where 

H4(X) = E ll'iX] = c4' 
i = 1  

Y2-Y3 YI - Y 4  
# l  - -  - -  / x 4  - -  

0 / 2  - -  0 /3  ' 0/1 - -  0 / 4 '  

)/1 - - Y 3  t / 2 - - 1 / 4  
N 2  - -  - - ,  / 2 5  -~- 

Or2 - -  or3 1 2  - -  0 / 4  

YI - -g2 1'3 - -g4 
/ 2 3  - -  - -  ~ 6  - -  

f f l  - -  012  ' 013  - -  0 / 4  

For generic choice of the ci, C is an algebraic curve of genus 3 and it has a natural involution 

r:C----~C, ( z , h ) ~ - - ~ ( - z , h )  

due to the skew-symmetry of the matrix X. Therefore the Jacobian variety Jac(C) of C splits 

up into an even and odd part: the even part is an elliptic curve C/r  and the odd part is a 

two-dimensional abelian surface Prym r (C) called the Prym variety of C 

Jac(C) = C/r  + Prying(C). 

The van Moerbeke-Mumford linearization method provides then an algebraic map from 

the complex affine variety 

4 

Ac = N { H i ( X )  = ci} C C 6 
i = 1  

to the Jacobi variety Jac(C). By the anti-symmetry of C, this map sends A,. to the Prym 

variety Pr ym r ( C) 

3 

Ac ~ Prymr(C),  p E Ac ~ E sk ~ Prymr(C) 
k = l  
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and the complex flows generated by the constants of the motion are straight lines on 

Prymr (C). 

3. Algebraic complete integrability 

Deciding whether a system is completely integrable in the C~-sense is a hopeless task 
at this stage. There are some techniques to prove the non-analytic integrability, i.e. the 

non-existence of analytic first integrals: in small dimensions, the Melnikov method [38] 

enables one to prove the non-integrability of a system very close to an integrable system 
by showing the existence of homoclinic points on the separatrices of the perturbed system. 
Another method consists in proving the absence of extra analytic integrals (beside the 

energy) for the linearized equations along some special a priori known solutions. These 

methods combined with other ideas, has been used by Ziglin [50-52] in the dynamics of 
the rigid body to show that the only analytically integrable cases among bodies with fixed 
points are the three known cases (Euler, Lagrange and Kowalewski) and Kozlov [22] for 

some classes of geodesic flows on the Euclidean group E(3). 

As mentioned above, the resolution of the KdV equation has led to unexpected con- 

nections between mechanics, spectral theory, Lie algebra theory, algebraic geometry and 
even differential geometry. All these connections have generated renewed interest in the 
questions around complete integrability of finite and infinite dimensional systems, ordinary 

and partial differential equations. However given a Hamiltonian system, it remains often 
hard to fit it into any of those general frameworks. But luckily, most of the problems under 

considerations possess the much richer structure of the so-called "algebraic complete inte- 
grability" which is more restrictive than the real analytic one commonly used. This notion 
will be motivated by the following example: consider again the Euler rigid body motion 

(Section 2.1). The system of differential equations (2.12) has Laurent series solutions, 

X(t)  = t - l ( X  ~°) + X~l)t + X(2)t 2 + . . . ) ,  (3.1) 

depending on dim(phase space) - 1 = 2 free parameters. Putting (3.1) into (2.12), solving 
inductively for the X ~k), one finds at the 0th step a non-linear equation, 

X ~°) + [X ~°), ~.X f°)] = 0 (3.2) 

and at the kth step, a linear system of equations, 

k-I 
(L - kI)X fk) = - Z [ X  (i), ~.x(k-i)], k > 1, 

i=1 

where L is the linear operator L : so(3) --+ so(3) defined by 

L(Y) = Y + [X ~°), ~.Y] + [Y, )~X °] = Jacobian of (3.2) 

and the matrix X ~°) appearing in L is a solution of the non-linear equation (3.2). An easy 
computation shows that the matrix (L - kI) is always invertible unless k = 2 and then 
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the rank equals 1. This shows that the coefficient X (2) contains two free parameters, which 

account for cl and c2. The complex intersection 

2 

F~{ Hi = ci } C 3 

i=1 

is the affine part of  an elliptic curve ___ CP  3 which is obviously a torus and it is well known 

that this torus has an algebraic addition law connecting p(tl  + t2) to p(tl ) and p(t2) where 

p( t )  -- (ml( t ) ,  m2(t),  m3 (t)) is a solution of  (2.7). This state of affairs is summarized by 

the notion of algebraic complete integrability, it was introduced by Adler-van Moerbeke 

[4,5] and Mumford [44]. 

Consider a Hamiltonian system 

8H 
= f ( z )  = J ~ - - ,  z • Rm, 

#z 
(3.3) 

where J = J(z )  is a skew-symmetric matrix with polynomial entries in z, for which the 

corresponding Poisson bracket 

ja", 1 {H~, H/} \ -~z ' az I 

satisfies the Jacobi identity. The system (3.3) with polynomial fight-hand side will be called 

algebraically completely integrable (a.c.i.) when: 

(a) The system possesses n + k polynomial invariants Hi . . . . .  H,+/~ (Casimir functions) 

of  which k lead to zero vector fields J(OHn+i/Oz) = 0, l < i < k, the n remaining ones 

are in involution (i.e. {Hi, Hi} = 0) and m = 2n + k. For most values of ci E R, the 
r'3n+k l Hi ~rn invariant manifolds ~ ~i=1 ~ ---- ci, z • } are compact and connected. Then, according 

to the Arnold-Liouville theorem, there exists a diffeomorphism 

n +k 

: ~'~{Hi = ci, z • R m } --> Rn/Lattice (real 49 tofi) 
i = l  

and the solutions of  the system (3.3) are straight line motions on these toil. 
(b) The invariant manifolds, throught of  as affine varieties in C m (non-compact) can be 

completed into complex algebraic tori, i.e., 

n+k 

N {Hi ----- ci, z • C m } = complex algebraic torus C"/Lattice (i.e. abelian 
i = l  

variety)\a divisor D (i.e. one or several codimension 
1 subvarities). 

Algebraic means that C n/Lattice can be defined as an intersection N ~  1 { Fi (Zo . . . . .  ZN) = 
0] involving a large number of  homogeneous polynomials Fi. The functions zi are required 

to be meromorphic on Cn/Lattice, and in particular in the natural coordinates (tl . . . . .  tn) 
of  Cn/Lattice coming from C n, the functions zi = zi (tl . . . . .  tn) are meromorphic and (3.3) 
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defines straight line motion on C n/Lattice. Condition (b) means, in particular, there is an 

algebraic map 

( Z l ( t )  . . . . .  Zm(t)) ~ ( S l ( t )  . . . . .  Sn(t)) 

making the following sums linear in t: 

n si(t) 

f o,:=aj,, l < j <n, 
i= 1 si (0) 

where wl . . . . .  Wn denote holomorphic differentials on some algebraic curves. In particular, 

when these curves are hyperelliptic, the above sums coincide with the formula (1.1). 

Adler and van Moerbeke [5] have developed and used the following necessary algebraic 
complete integrability criterion: 

Theorem 4. I f  the Hamiltonian system (3.3) is algebraically completely integrable, then 

(i) each zi blows up for  some value o f t  E C. 

(ii) whenever it blows up, the solution z(t)  behaves as a Laurent series 

zi = t -ki (zl 0) + zll)t + zl2)t 2 + "  "), ki E 77, some ki > 0, (3.4) 

which admits m - 1 free parameters. 

This a.c.i, criterion is implicit in a beautiful investigation of Kowalewski [21] in 1889 

for which she was awarded the Bordin prize by the French Academy; there she finds all 
the completely integrable rigid body motion: the Euler rigid body motion, the Lagrange top 
and her famous Kowalewski top. To explain the criterion, if the Hamiltonian flow (3.3) is 

algebraically completely integrable, it means that the variables zi are meromorphic on the 
toms C n/Lattice and by compactness they must blow up along a codimension 1 subvariety 
(a divisor) D C Cn/Lattice. By the a.c.i, definition, the flow (3.3) is a straight line motion 

in C n/Lattice and thus it must hit the divisor D in at least one place. Moreover, through 
every point of D, there is a straight line motion and therefore a Laurent expansion around 
that point of intersection. Hence the differential equation must admit Laurent expansions 

which depend on the n - 1 parameters defining D and the n + k constants ci defining the 
torus Cn/Lattice, the total count is therefore m - 1 = dim(phase space) - 1 parameters. 

Assume now Hamiltonian flows to be (weight)-homogeneous with a weight vi ~ 71, > O, 

going with each variable zi, i.e. 

fi(otVlZl . . . . .  otVmZm) : otv|+l f i (Z l  . . . . .  Zm), VOt E C. 

Observe that then the constants of the motion H can be chosen to be (weight)-homogeneous: 

H(ot~lzl . . . . .  ot~'zm) = otkH(z l  . . . . .  Zm), k E 7/. 

According to Yosida [48], if the flow is algebraically completely integrable, the differential 
equations (3.3) must admit Laurent series solutions (3.4) depending on m -  1 free parameters. 
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We must have ki = vi and coefficients in the series must satisfy at the 0th step non-linear 

equations, 

~(z~l 0) . . . . .  Z(m 0)) + gizl  O) = O, 1 < i < m (3.5) 

and at the kth step, linear systems of  equations 

( L - k I ) z  <k)= { 0 f ° r k =  1, 
some polynomial in z 0) . . . . .  z Ik-I) for k > 1, (3.6) 

where 

~f L = Jacobian map of  (3.5) = ~ + glIz=z~o~. 

If  m - 1 free parameters are to appear in the Laurent series, they must either come from 

the non-linear equations (3.5) or from the eigenvalue problem (3.6), i.e. L must have at 

least m - 1 integer eigenvalues. These are much less conditions than expected, because of 

the fact that the homogeneity k of  the constant H must be an eigenvalue of L. Moreover, 

the formal series solutions are automatically convergent as a consequence of  the majorant 

method [31]. 

To show that a system is algebraically completely integrable, we proceed as follows: 

- The first step is to show the existence of  the Laurent solutions, which requires an argu- 

ment precisely every time k is an integer eigenvalue of  L and therefore L - kI is not 

invertible. 

- One shows the existence of  the remaining constants of  the motion in involution so as to 

reach the number n + k. 

- For given cl . . . . .  Cm, the set 

{ L a u r e n t s o l u t i o n s z i ( t ) = t - V i ( z l ° )  (l) (2 '2  i t + z  i t + . . . ) ,  
D = _ 

1 < i < m, such that Hj(z i ( t ) )  = cj + Taylor part 

defines one or several n - 1 dimensional algebraic varieties (divisor) having the property 

that 

n + k  

A{H---- -c i ,  E C m} t..J D smooth connected with z a compact, variety n 

i= l commuting vector fields independent at every point 
= a complex algebraic torus T n = Cn/Latt ice.  

The flows J(OHk+i/~)Z ) . . . . .  J(OOk+n/OZ) are straight line motions on T". 
- From the divisor D, a lot of  information can be obtained with regard to the periods and 

the action-angle variables. 

Next I shall explain how these ideas can be used on an interesting completely integrable 
Hamiltonian system. 
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3.1. Kowalewski's top 

The motion for Kowalewski's top is governed by the equations 

t h = m A ) ~ m + y A l ,  ~ / = y A L m ,  (3.7) 

where m, y and I denote, respectively, the angular momentum, the directional cosine of the 
z-axis (fixed in space), the center of gravity which after some rescaling and normalization 
may be taken as l = (1, 0, 0) and ;Lrn = (ml /2 ,  m2/2,  m3/2). The system (3.7) can be 
written 

#tl ~ m2m3, 
til2 =- - -mlm3 + 2y3, 
r/'t3 ~--- --2}'2, 

1;'1 = 2m3Y2 - m2Y3, 
?/2 = mly3 - 2m3Y1, 
~'3 = m2Y1 - ml Y2, 

(3.8) 

with constants of motion 

1 2 m 2 ) + m  2 cl, H j  = ~ ( m  1 +  + 2 y l  = 

H2 = m l Y l  +m2Y2 +m3Y3 = c 2 ,  
Hg y2 + y2 = 2 + Y3 2 = c3 = 1, (3.9) 

H 4 =  [ ( m l + 2 i m 2 ) 2 - ( y l + i y 2 ) ]  [ ( m l 2 i m 2 )  2 iv2) 1 - (Yl  - = c4. 

The system (3.8) admits Laurent series solutions 

m(l).  . (2).2 
m i ( t ) = t - ~ ( m l  ° ) +  i t + m i  t + . . . ) ,  (3.10) 
yi(t) = t-2(yi  (0) + yi(l)t + y/(2)t2 + . . . ) ,  

which depend on five free parameters ~1 . . . . .  ~5. Putting (3.10) into the differential equa- 
tions (3.8), one finds at the 0th step a non-linear system 

m(l o) . (0) (0) -t- m 2 m 3 = O, 

m~O) --rnl(O) m3(O) + 2Y3(0) = O, 

m(O) ~ (o) 
3 --ZY2 = 0 ,  

,, (0) (0) (0). (0) 
2Y~ °) + zm3 Y2 - m2 Y3 = 0, 

21-'2 (0) + m(,°)y3(°) - 2m(3°)y~ °) = O, 

(0)_ (0) _ m(l O) y2(0) 2Y3 ( ° ) + m 2  Yl = 0 ,  

(3.11) 

and at the kth step, a system of  linear equations 

( m ( k ) )  { 0 f o r k =  1, ( ( )  ) )  
= m (1) { m (k-l) 

(L - kI) y(k) a polynomial in ~ y(k-J) k > 1 yO) . . . . . . . .  

where L is the Jacobian matrix of the equations (3.11). The parameter ot ] appears at the 0th 
step, i.e. in the resolution of (3.11) and the four remaining ones ¢x2 . . . . .  or5 at the kth step, 
k ---- 1 . . . . .  4. There are two distinct families of Laurent solutions, 
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Firs t  Laurent  solut ions Second  Laurent  solut ions 

m l ( t )  = --oj_: + i(otl2 _ 2)~2 + o( t )  
t 

iotl 
m 2 ( t )  - -  ot2ot2 q- o ( t )  

t 

i 
m3(t )  = - + ulot2 + o( t )  

t 

1 
yl (t)  = ~ + o( t )  

i 
y2(t)  = ~ + o( t )  

y3(t)  or2 = - -  + o( t )  
t 

ml (t)  = --or. _ i(°t 2 _ 2)ot2 + o( t )  
t 

m2(t )  = -- ot2oe2 + o( t )  
t 

- i  
m3(t )  = - -  + c~l~2 + o ( t )  

t 

1 
yj (t) = 2t 2 + o( t )  

- i  
y2(t)  = 2t 3 + o( t )  

y3(t)  = ___z- + o( t )  
t 

By subst i tut ing these series in the constants  of  the mot ion  Hi (3.9), one e l iminates  three 

parameters  l inearly,  leading  to a lgebra ic  re la t ion be tween the two remain ing  parameters ,  

which  is nothing but  the equat ion of  the d ivisor  D along which  the mi, ~/i blow up. Since 

the sys tem (3.8) admits  two famil ies  of  Laurent  solut ions,  then D is a set of  two i somorph ic  

curves  of  genus  3, D = DI + D - l :  

De " P ( ~ t ,  ~2) = (c~ 2 - 1)((~ 2 - 1)or 2 - P ( o ' 2 ) )  + C4 = 0 ,  (3.12) 

where  P(ot2) = clot 2 -- 26c2ot2 -- 1 and E = + 1 .  Each of  the curve D~ is a 2 - 1 ramif ied 

cover  (otl, c~2,/3) of  el l ipt ic  curves  D~): 

D O : f12 = p 2 ( o t 2  ) _ 4c4ot4  (3.13) 

ramif ied  at the four points  o/1 = 0 cover ing  the four roots  of  P(ot2) = 0. It was shown by 

the author  [27-29]  that  each divisor  DE is ample  and defines a polar iza t ion  (1,2), whereas  

the d ivisor  D,  of  geomet r ic  genus  9, is very  ample  and defines a polar iza t ion  (2,4). More  

precisely,  we have the fo l lowing  theorem: 

T h e o r e m  5. Let 

4 

Ac = N [ H i  = ci} C C 6 

i=1 

be the affine surface defined by putting the four invariants (3.9) of the Kowalewski flow (3.8) 

equal to generic constants, then 

(a) Ac is the affine part of  an abelian surface f~ with 

Ac/Ac = D = one genus 9 curve consisting of two genus 3 

curves D~ (3.12) intersecting in four points. Each 

DE is a double cover of  an elliptic curve D O (3.13) 

ramified at four points. 
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Moreover, the Hamiltonian f lows generated by the vector fields X Ht and X H4 are 

straight lines on Ac. 

(b) The eight functions 

1, f l  = m l ,  f2 = m2, f3 = m 3 ,  f 4 = Y 3 ,  f5 = f ? + f 2 ,  

f6 = 4 f l f4  - f 3 f s ,  f7 = (f2~,1 - f l y2 )  f3 + 2 f4×2. 

form a basis o f  the vector space E( D ) o f  meromorphic functions on f~c with at worst a 

simple pole along D. Moreover, the map 

fitc ~-- C2/Lattice ---> CP 7, (tl, t2) ~-~ [(1, f l  (tl, t2) . . . . .  fT(tl, t2))] 

is an embedding o f  fic into CP 7. 

(c) The tori can be identified as 

ftc = dual o f  P r y m ( O J  O°).  

The method explained above can be and has been applied to other problems. For example, 

we show in the same style as before (see [ 14,33]), that the Manakov geodesic flow on S O (4) 

is algebraically completely integrable and the abelian surface Ac which completes the affine 

surface defined by the four constants is the Prym variety Prymr (79) of  genus 3 curve 79: 

w 2 + c2z 2 - c3z + c4 + 2c ly  = O, 
4 

79 
y2 = I - I (  z _ ai). 

i=1 

We know from Section 3.1, that this problem linearizes on the Prym variety Prymr (C) of the 

spectral curve C (2.18). Prymr (79) is not isomorphic to Prymr (C) but only isogenous, the 

precise relation between these two abelian surfaces begin that they are dual of  each other; in 

fact, the functions xi are themselves meromorphic on Prymr (79), while only their squares 

are on Prymr (C). It is also isogeneous to the Jacobian of  a naturally arising hyperelliptic 

curve, as follows from K6tter's [19,20] investigation of  the Clebsch case for the motion of  

a rigid body in an ideal fluid. The connection with Kowalewski's top and H6non-Heiles 

motion can be found in Adler-van Moerbeke [6]. 
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